Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Am J Clin Pathol ; 157(5): 731-741, 2022 05 04.
Article in English | MEDLINE | ID: covidwho-2114225

ABSTRACT

BACKGROUND: Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern associated with immune escape is important to safeguard vaccination efficacy. We describe the potential of delayed N gene amplification in the Allplex SARS-CoV-2 Assay (Seegene) for screening of the B.1.351 (20H/501.V2, variant of concern 2 [VOC.V2], South African SARS-CoV-2 variant) lineage. METHODS: In a study cohort of 397 consecutive polymerase chain reaction-positive samples genotyped by whole-genome sequencing, amplification curves of E/N/S-RdRP targets indicated delayedN vs E gene amplification characteristic of B.1.351. Logistic regression was used to calculate a VOC.V2 probability score that was evaluated as a separate screening test in an independent validation cohort vs sequencing. RESULTS: B.1.351 showed a proportionally delayed amplification of the  N vs E gene. In logistic regression, only N and E gene cycle thresholds independently contributed to B.1.351 prediction, allowing calculation of a VOC.V2 probability score with an area under the curve of 0.94. At an optimal dichotomous cutoff point of 0.12, the VOC.V2 probability score achieved 98.7% sensitivity at 79.9% specificity, resulting in a negative predictive value (NPV) of 99.6% and a positive predictive value of 54.6%. The probability of B.1.351 increased with an increasing VOC.V2 probability score, achieving a likelihood ratio of 12.01 above 0.5. A near-maximal NPV was confirmed in 153 consecutive validation samples. CONCLUSIONS: Delayed N vs E gene amplification in the Allplex SARS-CoV-2 Assay can be used for fast and highly sensitive screening of B.1.351.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Probability , SARS-CoV-2/genetics , Whole Genome Sequencing
2.
J Clin Virol Plus ; 2(3): 100090, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1945522

ABSTRACT

Background: Real-time polymerase chain reaction (RT-PCR) testing on a nasopharyngeal swab is the current standard for SARS-CoV-2 virus detection. Since collection of this sample type is experienced uncomfortable by patients, saliva- and oropharyngeal swab collections should be considered as alternative specimens. Objectives: Evaluation of the relative performance of oropharyngeal swab, nasopharyngeal swab and saliva for the RT-PCR based SARS-CoV-2 Delta (B.1.617.2) and Omicron (B.1.1.529) variant detection. Study design: Nasopharyngeal swab, oropharyngeal swab and saliva were collected from 246 adult patients who presented for SARS-CoV-2 testing at the screening centre in Ypres (Belgium). RT-PCR SARS-CoV-2 detection was performed on all three sample types separately. Variant type was determined for each positive patient using whole genome sequencing or Allplex SARS-CoV-2 variants I and II Assay. Results and conclusions: Saliva is superior compared to nasopharyngeal swab for the detection of the Omicron variant. For the detection of the Delta variant, nasopharyngeal swab and saliva can be considered equivalent specimens. Oropharyngeal swab is the least sensitive sample type and shows little added value when collected in addition to a single nasopharyngeal swab.

3.
Infect Dis (Lond) ; 54(10): 731-737, 2022 10.
Article in English | MEDLINE | ID: covidwho-1868224

ABSTRACT

BACKGROUND: Current method for diagnosis of SARS-CoV-2 infection is an RT-PCR test on the nasopharyngeal or oropharyngeal swab. Rapid diagnosis is essential for containing viral spread and triage of symptomatic patients presenting to hospital ER departments. As a faster alternative to RT-PCR, we evaluated a SARS-Cov-2 Rapid Antigen test in symptomatic patients presenting to hospital ER departments. METHODS: We evaluated the diagnostic performance of the Roche SARS-CoV-2 Rapid Antigen test (SD Biosensor) for detection of SARS-CoV-2 compared to RT-PCR. RESULTS: Our study showed inferior performance of the SARS-CoV-2 Rapid Antigen test for detection of SARS-CoV-2. Firstly, because of the lack of specificity, which is potentially life-threatening due to the association of nosocomial-acquired SARS-CoV-2 infection. Secondly, with a sensitivity of 45.5%, it is impossible to rule out SARS-CoV-2 infection, resulting in reflex PCR-testing. Comparison of viral load in RT-PCR positive samples with corresponding antigen results showed a significant difference between antigen positive and negative samples. COVID-19 infection will not be detected in patients admitted to the hospital in an early or late phase, typically associated with low viral loads. Sensitivity increases when testing within 5-7 symptomatic days, but the implementation of this cut-off is impractical in ER settings. However, diagnostic performance is better to detect high viral load (> = 5 log10 copies/mL) linked with contagiousness. CONCLUSION: Our study showed inferior performance of the Roche SARS-CoV-2 Rapid Antigen test (SD Biosensor) for detection of SARS-CoV-2 which limits its use as a diagnostic gatekeeper in ER departments, but is able to differentiate contagious individuals.


Subject(s)
COVID-19 Serological Testing , COVID-19 , Antigens, Viral , COVID-19/diagnosis , Emergency Service, Hospital , Humans , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL